Home Search Collections Journals About Contact us My IOPscience

Transistors and tunnel diodes enabled by large-scale MoS₂ nanosheets grown on GaN

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2017 Semicond. Sci. Technol. 32 075011

(http://iopscience.iop.org/0268-1242/32/7/075011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 175.159.123.61 This content was downloaded on 15/08/2017 at 03:04

Please note that terms and conditions apply.

You may also be interested in:

Thermally oxidized 2D TaS2 as a high- gate dielectric for MoS2 field-effect transistors Bhim Chamlagain, Qingsong Cui, Sagar Paudel et al.

Selective-area growth and controlled substrate coupling of transition metal dichalcogenides Brian M Bersch, Sarah M Eichfeld, Yu-Chuan Lin et al.

Electrical and photovoltaic properties of residue-free MoS2 thin films by liquid exfoliation method Seung Kyo Lee, Dongil Chu, Da Ye Song et al.

2D Materials Advances: From Large Scale Synthesis and Controlled Heterostructures to Improved Characterization Techniques, Defects and Applications Zhong Lin, Amber McCreary, Natalie Briggs et al.

Synthesis, properties and applications of 2D non-graphene materials Feng Wang, Zhenxing Wang, Qisheng Wang et al.

Wafer-scale monolayer MoS2 grown by chemical vapor deposition using a reaction of MoO3 and H2S Youngchan Kim, Hunyoung Bark, Gyeong Hee Ryu et al.

A novel synthesis method for large-area MoS2 film with improved electrical contact Xiongfei Song, Wu Zan, Hu Xu et al.

Investigation of chemical vapour deposition MoS2 field effect transistors on SiO2 and ZrO2 substrates Xi Liu, Yang Chai and Zhaojun Liu

Photonics and optoelectronics of two-dimensional materials beyond graphene Joice Sophia Ponraj, Zai-Quan Xu, Sathish Chander Dhanabalan et al. Semicond. Sci. Technol. 32 (2017) 075011 (7pp)

Transistors and tunnel diodes enabled by large-scale MoS₂ nanosheets grown on GaN

Pak San Yip¹, Xinbo Zou^{1,2,3}, Wai Ching Cho¹, Kam Lam Wu¹ and Kei May Lau^{1,2,3}

 ¹ Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology (HKUST), Hong Kong
² Institute for Advanced Study (IAS), Hong Kong University of Science and Technology (HKUST), Hong

Kong

E-mail: eexinbo@ust.hk and eekmlau@ust.hk

Received 7 March 2017, revised 1 May 2017 Accepted for publication 10 May 2017 Published 27 June 2017

Abstract

We report growth, fabrication, and device results of MoS_2 -based transistors and diodes implemented on a single 2D/3D material platform. The 2D/3D platform consists of a large-area MoS_2 thin film grown on SiO_2/p -GaN substrates. Atomic force microscopy, scanning electron microscopy, and Raman spectroscopy were used to characterize the thickness and quality of the as-grown MoS_2 film, showing that the large-area MoS_2 nanosheet has a smooth surface morphology constituted by small grains. Starting from the same material, both top-gated MoS_2 field effect transistors and $MoS_2/SiO_2/p$ -GaN heterojunction diodes were fabricated. The transistors exhibited a high on/off ratio of 10^5 , a subthreshold swing of 74 mV dec⁻¹, field effect mobility of $0.17 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, and distinctive current saturation characteristics. For the heterojunction diodes, current-rectifying characteristics were demonstrated with on-state current density of 29 A cm⁻² and a current blocking property up to -25 V without breakdown. The reported transistors and diodes enabled by the same 2D/3D material stack present promising building blocks for constructing future nanoscale electronics.

Supplementary material for this article is available online

Keywords: 2D material, chemical vapor deposition (CVD), field effect transistors (FETs), heterojunction diode, MoS_2

(Some figures may appear in colour only in the online journal)

1. Introduction

Two-dimensional (2D) semiconducting transition-metal dichalcogenides (TMDs) have attracted significant research interest due to their unique electronic and optical properties [1]. In particular, molybdenum disulfide (MoS_2), with its semiconductor band gap, has been widely studied and proposed for various electronic devices, including photodetectors [2], field effect transistors (FETs) [3, 4], sensors [5], and so on. In addition to monolayer MoS_2 , multi-layer MoS_2 has recently been regarded as a promising semiconductor material

for nanoelectronics, optoelectronics, and flexible devices [6, 7].

Apart from solely MoS_2 -based transistors [3, 4, 8], ultrathin TMD layers could also be combined with other emerging materials for novel heterojunction devices. For example, MoS_2 has been utilized to form p–n diodes with 2D tungsten diselenide (WSe_2) [9] and carbon nanotubes [10]. Recently, 2D MoS_2 films on wide bandgap semiconductor GaN have garnered extensive research efforts to benefit from the unique advantages of both materials [11]. Heterojunction diodes have been successfully demonstrated by transferring a chemical vapor deposition (CVD)-grown MoS_2 layer onto a p-type gallium nitride (p-GaN) surface. However, MoS_2 -based devices using micro-mechanical exfoliation [12]

³ Authors to whom any correspondence should be addressed

or layer transfer [11, 13] are not preferred in volume production due to the variation in material size, layer number, and location of transferred MoS_2 . It is also believed that the surface states of transferred samples and the residue after the transfer could affect the device performance. Although there have been attempts to directly grow ultrathin MoS_2 layers on GaN, the shape and size of the resulting MoS_2 was limited to be triangular with a maximum side length of several microns [14].

Semiconductor transistors and diodes are key building blocks of functional integrated circuits. So far, there have been reports of MoS₂-based 2D or 2D/3D individual electron devices, however, demonstration of more than one specific type of device is scarce. A platform that is conducive for fabricating both transistors and diodes is uncommon [15], especially a large-area one. In our prior work, large-area continuous MoS₂ films were demonstrated by MoO₃ sulfurization on a SiO_2/Si substrate [16]. In this paper, we report MoS₂-based transistors and diodes fabricated on the same MoS₂/SiO₂/p-GaN/Si platform. Two crucial issues of vertical 2D/3D stack electronics are addressed: (1) CVD growth of wafer-scale MoS₂ on a SiO₂/p-GaN/Si substrate for 2D/ 3D integration; (2) demonstration of transistors and diodes on the same platform. Specifically, the top-gated MoS₂-based transistors (channel width/length of $\sim 37/6 \,\mu m$) show electron mobility of the MoS₂ multi-layer film to be $0.17\,\text{cm}^2\,V^{-1}\,\text{s}^{-1}$ and an on/off current ratio over 10^5 with distinctive saturation characteristics. current The MoS₂/SiO₂/p-GaN semiconductor/insulator/semiconductor (SIS) heterojunction diodes show good current-rectifying characteristics. The SIS diode could be used as a rectifier or a switch to steer current towards one direction, convert AC into DC voltages or de-modulate AC signals. More importantly, the demonstration of these building block devices on one single platform opens up opportunities for implementing complex nanoscale electronics in the future.

2. Experiment details

The starting sample consists of a magnesium (Mg) doped p-type GaN layer grown on a (111) Si substrate. The sheet resistance of the p-GaN layer was measured to be $\sim 1.93 \ \Omega \ cm$ with a hole mobility of $15.5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ and hole concentration of $2.0 \times 10^{17} \text{ cm}^{-3}$. Next, a 1 nm thick SiO₂ layer was deposited onto the p-GaN/Si substrates by E-beam evaporation. Then the multi-layer MoS₂ film growth was carried out by CVD at atmospheric pressure in a dual-zone furnace with a 25 mm diameter horizontal quartz tube. Figure 1 schematically shows the MoS₂ multi-layer film structure grown on the SiO₂/p-GaN/Si substrate. The precursor and reactant material were MoO₃ powder (Sigma Aldrich, 99.5%) and sulfur (Sigma Aldrich, 99.5%) respectively. Different from our previous report of growing MoS₂ continuous thin film on SiO₂/Si substrates [16], when growing MoS_2 on the SiO₂/p-GaN substrate, N₂ as the carrier gas and 800 °C growth temperature were used to avoid GaN decomposition. More detailed information about furnace set-

Figure 1. Schematic of the MoS_2 large-area continuous multi-layer film grown on a SiO_2/p -GaN/Si substrate.

up and growth method are provided in the supplementary data section is available online at stacks.iop.org/SST/32/075011/ mmedia.

Atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy were used to characterize the surface morphologies of the as-grown MoS_2 multi-layer film. The as-grown MoS_2 continuous multi-layer film was used to fabricate both top-gated FETs and SIS heterojunction diodes using an optical photolithography fabrication process. The metal lift-off process was carefully carried out by immersing the samples in acetone for about one day, cleaning with isopropanol and finished by rinsing and baking on a 110 °C hotplate to avoid SiO₂ or MoS₂ peeling off.

For the top-gate FET fabrication, a 25 nm thick aluminum oxide (Al₂O₃) deposited by thermal atomic layer deposition (ALD) was used as dielectric. The source/drain and gate regions were formed by depositing Ti/Au with thickness of 10/190 nm and 10/90 nm, respectively. For the SIS heterojunction diodes, 50 nm silicon nitride (Si_3N_4) was first deposited on the sample at 200 °C by plasma enhanced chemical vapor deposition (PECVD) using an STS MESC multiplex PECVD. The diode mesa regions were then defined by etching the materials in the unmasked regions using CHF₃/O₂ reactive ion etching. 20/30/80 nm of Pt/Ni/Au was deposited onto the p-GaN layer as p-contact and the sample was annealed in an N2 ambient at 350 °C for 1 min. The Si₃N₄ layer was then removed by a buffered oxide etch solution after protecting the MoS₂ during annealing. Finally, 10/50 nm of Ni/Au was deposited onto the MoS₂ film as the n-contact.

3. Results and discussion

The microscopic and SEM images of the as-grown MoS_2 samples are displayed in figures 2(a) and (b) respectively. The optical contrast between the MoS_2 continuous multi-layer film and the SiO_2/p -GaN/Si substrate was indicated by scratching the sample with tweezers.

AFM images with $1 \mu m \times 1 \mu m$ and $10 \mu m \times 10 \mu m$ scanning area of the MoS₂ continuous multi-layer film grown on the SiO₂/p-GaN/Si substrate are shown in figure 3. The $1 \mu m \times 1 \mu m$ AFM image, figure 3(a), shows the continuous multi-layer film consists of tiny MoS₂ grains. The root mean square roughness in the $1 \mu m \times 1 \mu m$ scan area is 0.91 nm,

Figure 2. (a) Microscopic and (b) SEM images of MoS_2 large-area continuous multi-layer film with a scratched tweezer mark.

Figure 3. AFM images of the MoS₂ multi-layer film surface with scanning area (a) 1 μ m \times 1 μ m and (b) 10 μ m \times 10 μ m.

which indicates a smooth surface morphology of the ${\rm MoS}_2$ continuous multi-layer film.

As there are no innate film edges in the MoS₂ continuous multi-layer film, its thickness cannot be measured directly using AFM. A spectroscopic verification by the Raman spectra was used to obtain the layer number of the MoS₂ nanosheet. Figures 4(a) and (b) showed Raman spectra of samples before and after MoS₂ nanosheet growth. In figure 4(a), with GaN E_2^{high} modes located at 566.51 cm⁻¹, the A_1^{LO} modes located at 733.12 cm⁻¹, and a local vibration mode located at 650.22 cm^{-1} , the measurement results are consistent with those for a Mg-doped GaN layer [17]. Figure 4(b) showed a typical Raman spectra of a sample with MoS₂ grown on top. The E_{2g}^1 modes was located at 382.9 cm⁻¹ and the A_{1g} modes at 406.9 cm⁻¹. The spacing between these two peaks was calculated to be 24.0 cm⁻ which corresponds to four layers of MoS₂ for the as-grown material. A Raman mapping image of the peak difference between the E_{2g}^1 and A_{1g} modes over an area of $70 \,\mu\text{m} \times 70 \,\mu\text{m}$ is displayed in figure 4(c). The mapping image indicated that the peak distance mainly varied between 24.0 and 26.0 cm^{-1} , which implied that over a large area the layer number of the as-grown MoS₂ is uniformly controlled to be 4-5 [18, 19].

The schematic cross-sectional structures and an optical image of a top-gate MoS_2 FET are shown in figures 5(a) and (b). The logarithmic scales and linear scales of the DC transfer characteristics (drain current versus gate bias) of the MoS_2 top-gated FETs are shown in figure 5(c). The top gate

Figure 4. (a), (b) Raman spectra of the SiO₂/p-GaN substrate and the MoS₂/SiO₂/p-GaN sample; * indicates the strong Si signal, which occurs at 520 cm⁻¹; (c) Raman mapping image of E_{2g}^{l} and A_{1g} peak spacing over an area of 70 μ m × 70 μ m.

voltage ($V_{\rm gs}$) was swept from -2 to +8 V at drain voltages ($V_{\rm ds}$) of +0.5 to +1.5 V with a step of +0.5 V. The top-gated FETs are depletion-mode n-channel devices which showed an on/off current ratio of 10^5 and a subthreshold swing (SS) of 74 mV dec⁻¹. The SS was extracted at $V_{\rm ds} = 1$ V and $V_{\rm gs}$

Figure 5. Device structure of MoS_2 top-gated FETs from (a) aerial view and (b) optical microscope view. (c) Logarithmic scale (left) and linear scale (right) of transfer characteristics of the MoS_2 few-layer film. (d) Output curve of the MoS_2 continuous multi-layer film FETs with several top gate voltage biases. (e) Capacitance–voltage measurement of the top-gated FETs at three different frequencies.

slightly lower than 0 V, as shown in figure 5(c). The field effect carrier mobility of the MoS₂ FETs was also extracted by measuring differential resistance [3]: $\mu = (\Delta I_{ds}/\Delta V_g) \times [L/(WC_{ox}V_{ds})]$, where L and W are the channel length and the channel width respectively, C_{ox} is the gate oxide capacitance per unit area, $\Delta I_{ds}/\Delta V_g$ is the slope of the transfer curve taken in the linear region, which is also known as the transconductance, and V_{ds} is the channel bias. As $C_{ox} = 3.54 \times 10^{-3}$ F m⁻² for the 25 nm thick thermal aluminum oxide and $L/W = 6/37 \mu m$, the calculated field effect carrier mobility of the as-grown MoS₂ continuous multi-layer film FETs was ~0.17 cm² V⁻¹ s⁻¹ at $V_{ds} = 0.5$ V. The on/off current ratio and carrier mobility are comparable to the FETs fabricated by MoS₂ thin films on SiO₂/Si substrates which showed carrier mobility ranging from ~0.003 to ~7.23 cm² V⁻¹ s⁻¹ [20–24]. It is expected the mobility and on-state current could be greatly improved by optimizing the SiO₂/GaN substrate roughness, MoS₂ nanograin sizes, and also device contacts [3, 4, 6]. Output characteristics of the top-gated MoS₂ FETs was also evaluated by sweeping the V_{ds}

Figure 6. Device structure of $MoS_2/SiO_2/p$ -GaN SIS heterojunction from (a) aerial view and (b) optical microscope view. Current versus bias voltage characteristics of (c) p-GaN-p-GaN contact, (d) SIS heterojunction diode in linear scale, and (e) SIS heterojunction diode in logarithmic scale.

from 0 to +5 V, with gate modulation steps of -1 V from +8 to -2 V, as shown in figure 5(d). For $V_{gs} = +8$ V, the drain current of the device began to saturate with an on-state current of ~0.8 μ A when V_{ds} was only ~0.7 V. The small on-resistance and early onset of current saturation at a small V_{ds} under various V_{gs} biases has important implication for the device's applications, especially for low operating power electronics.

The quality of the interface between the deposited Al₂O₃ and MoS₂ multi-layer film was also examined by conducting capacitance–voltage (*C*–*V*) measurements for the top-gated FETs. While sweeping the top-gate V_{gs} from -12 to +12 V and keeping V_s and V_d grounded, *C*–*V* was performed using three frequencies, 500 k Hz, 1 M Hz, and 1.5 M Hz, as shown in figure 5(e). These high-frequency *C*–*V* measurements confirm a classic metal-oxide-n-type semiconductor capacitor, as an evident depletion to accumulation transition can be found at negative gate bias. The large magnitude of hysteresis in all three curves points to a conclusion that there is a deficient response of the interface charges between the MoS₂ multi-layer film and Al₂O₃. To explain the large magnitude of the hysteresis, a model, $SS = \frac{kT}{q} \ln 10 \left(1 + \frac{C_s}{C_{\text{OX}}} + \frac{C_{\text{IT}}}{C_{\text{OX}}}\right)$, where SS denotes the subthreshold swing, $C_{\rm S}$ is the semiconductor capacitance, $C_{\rm IT}$ is the interface charge capacitance, C_{OX} is the dielectric capacitance, q is the charge on the electron, k is the Boltzmann's constant, and T is temperature in unit Kelvin, was applied to study the interface charge density. With a SS of 74 mV dec $^{-1}$ obtained by the fitting line shown in the logarithmic scales of the DC transfer characteristics in figure 5(c), the corresponding $C_{\rm IT}$ was calculated to be $8.59 \times 10^{-8} \,\mathrm{F \, cm^{-2}}$, and the density of charge was about $5.36 \times 10^{11} \,\text{eV}^{-1} \,\text{cm}^{-2}$, which is comparable to that of MoS_2 -based transistors reported in the literature [25, 26]. This may be caused by the yet to be optimized Al₂O₃ grown by ALD at 300 °C [27], resulting in a relatively large hysteresis.

Figures 6(a) and (b) showed the schematic structure and a microscopic image of a processed p-GaN/SiO₂/MoS₂ SIS diode. The typical current-voltage (I-V) curve between the two p-GaN pads is shown in figure 6(c), and the linear I-Vrelationship reveals an ohmic contact between the Pt/Ni/Au and p-GaN. Figure 6(d) showed the representative *I*-*V* curves of the SIS heterojunction diode which had the same p-contact and n-contact area (0.01 mm²) and inter-pad distance of 5.5 μ m. The threshold voltage and series resistance of the diode was extracted to be 5.0 V and 5.3 k Ω . The series resistance was slightly smaller than the SIS tunnel diode made of $MoS_2/h-BN/p$ -GaN [23]. The forward current increased rapidly beyond the threshold voltage and at 25 V, the on-state current was measured to be 2.92 mA, which is translated to a current density of 29 A cm⁻². To the best of our knowledge, this current is one of the largest currents reported for the 2D material/GaN vertically-stacked diodes [12, 23], showing the great potential of SIS diodes in this work to be used as a switch. Under reverse bias, the diode showed good current blocking characteristics and the leakage current was measured to be only 30 μ A at -10 V. Moreover, no breakdown was observed for reverse voltage up to -25 V. Figure 6(e) shows the logarithmic scale of the SIS diode I-V characteristics. The red dashed line indicates the fitting curve at the small positive bias voltage. Using the ideal diode equation in logarithmic scale, $\log I_{\rm D} = \frac{q}{nkT}V_{\rm D} + \log I_{\rm S}$, where $I_{\rm D}$, $I_{\rm S}$, and $V_{\rm D}$ are the diode current, reverse saturation current, and diode voltage respectively, q is the charge on the electron, n is the ideality factor, k is the Boltzmann's constant, and T is temperature in unit Kelvin. With $\frac{kT}{q} = 25.9 \text{ mV}$ at room temperature and from the fitting curve, the ideality factor of the SIS diode was calculated to be 55.2. The large ideality factor in the SIS diode was mainly attributed to a large series resistance induced by the SiO₂ insulator and the p-GaN grown on Si substrates.

In order to qualitatively explain the current flow mechanism of the I-V characteristics at thermal equilibrium, under forward and reverse biases, the band structure of the SIS diode was examined, as shown in figure 7. At thermal equilibrium, the Fermi levels of the MoS₂ and p-GaN are aligned, so the bands of the MoS₂ close to the SiO₂ will bend upward, and the bands of the p-GaN close to the SiO2 will bend downward. Since the SiO₂ insulating layer obstructs all carriers from passing through the junction, no current will flow through the device. When the device was forward biased, the Fermi level of the MoS₂ will move upward and the bands of the p-GaN close to the SiO₂ will bend upward. This leads to holes accumulating at the SiO₂/p-GaN interface and electrons accumulating at the MoS_2/SiO_2 interface. When above the threshold voltage, the accumulated carriers could tunnel through the thin (1 nm) insulating layer, as schematically shown in figure 7(b). When the SIS diode was reverse biased, the electrons or the holes cannot flow through due to the high potential barrier [13]. Although it is possible for electrons from the p-GaN to tunnel through the thin insulator to the MoS₂ layer, the resultant current is low due to the limited number of electrons in the p-GaN.

Figure 7. Energy band diagram of the SIS heterojunction diode at thermal equilibrium, under forward bias, and reverse bias.

4. Conclusion

In conclusion, we reported the direct growth of large-area 2D MoS_2 film on a SiO_2/p -GaN/Si substrate for fabrication of MoS_2 top-gated transistors and $MoS_2/SiO_2/p$ -GaN tunnel diodes. The as-grown MoS_2 thin film was characterized by AFM, SEM, and Raman spectroscopy. Fabricated top-gated FETs showed a large on/off current ratio ~10⁵, a SS of

74 mV dec⁻¹, carrier mobility of ~0.17 cm² V⁻¹ s⁻¹, and current saturation over a wide drain voltage range. A vertically stacked SIS heterojunction diode that consists of a few layers of as-grown MoS₂, a thin SiO₂, and p-GaN was also fabricated. The *I–V* characteristics showed a good current rectifying property with a large on-state current of 2.92 mA when the diode is forward biased and small reverse current when reversed-biased. The reported device results suggested great opportunities of implementing electronics using the large area 2D/3D material stacks.

Acknowledgments

This work was supported by the Research Grants Council (RGC) theme-based research scheme (TRS) of the Hong Kong Special Administrative Region Government under grant T23-612/12-R, and partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region (Project No. 16213915).

ORCID

Xinbo Zou https://orcid.org/0000-0003-1470-6840

References

- Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of twodimensional transition metal dichalcogenides *Nat. Nanotechnol.* 7 699–712
- [2] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Ultrasensitive photodetectors based on monolayer MoS₂ *Nat. Nanotechnol.* 8 497–501
- [3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS₂ transistors *Nat. Nanotechnol.* 6 147–50
- [4] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 High performance multilayer MoS₂ transistors with scandium contacts *Nano Lett.* 13 100–5
- [5] He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X and Zhang H 2012 Fabrication of flexible MoS₂ thin-film transistor arrays for practical gas-sensing applications *Small* 8 2994–9
- [6] Ganatra R and Zhang Q 2014 Few-layer MoS₂: a promising layered semiconductor ACS Nano 8 4074–99
- [7] Late D J et al 2013 Sensing behavior of atomically thin-layered MoS₂ transistors ACS Nano 7 4879–91
- [8] Amani M, Chin M L, Birdwell A G, O'Regan T P, Najmaei S, Liu Z, Ajayan P M, Lou J and Dubey M 2013 Electrical performance of monolayer MoS₂ field-effect transistors prepared by chemical vapor deposition *Appl. Phys. Lett.* **102** 193107
- [9] Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y and Duan X 2014 Electroluminescence and photocurrent generation from atomically sharp WSe₂/MoS₂ heterojunction p–n diodes *Nano Lett.* 14 5590–7

- [10] Jariwala D, Sangwan V K, Wu C C, Prabhumirashi P L, Geier M L, Marks T J, Lauhon L J and Hersam M C 2013 Gate-tunable carbon nanotube-MoS₂ heterojunction p–n diode *Proc. Natl Acad. Sci. USA* **110** 18076–80
- [11] Lee E W, Lee C H, Paul P K, Ma L, McCulloch W D, Krishnamoorthy S, Wu Y, Arehart A R and Rajan S 2015 Layer-transferred MoS₂/GaN PN diodes *Appl. Phys. Lett.* 107 103505
- [12] Li D, Cheng R, Zhou H, Wang C, Yin A, Chen Y, Weiss N O, Huang Y and Duan X 2015 Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide *Nat. Commun.* 6 7509
- [13] Jeong H et al 2015 Semiconductor-insulator-semiconductor diode consisting of monolayer MoS₂, h-BN, and GaN heterostructure ACS Nano 9 10032–8
- [14] Ruzmetov D et al 2016 Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride ACS Nano 10 3580–8
- [15] Chuang S *et al* 2014 MoS₂ P-type transistors and diodes enabled by high work function MoO_x contacts *Nano Lett.* 14 1337–42
- [16] Cho W C, Wu K L, Yip P S, Wang X, Chai Y and Lau K M 2016 Selectable synthesis of 2D MoS₂ and its electronic devices: from isolated triangular islands to large-area continuous thin film *IEEE Trans. Nanotechnol.* **15** 310–7
- [17] Guarneros C and Sánchez V 2012 Photoluminescence studies of Mg-doped gallium nitride films grown by metalorganic chemical vapor deposition *Superficies y Vacío* 25 223–5
- [18] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS₂ ACS Nano 4 2695–700
- [19] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 From bulk to monolayer MoS₂: evolution of Raman scattering *Adv. Funct. Mater.* 22 1385–90
- [20] Yu Y, Li C, Liu Y, Su L, Zhang Y and Cao L 2013 Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS₂ films *Sci. Rep.* **3** 1866
- [21] Lee Y, Lee J, Bark H, Oh I-K, Ryu G H, Lee Z, Kim H, Cho J H, Ahn J-H and Lee C 2014 Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor *Nanoscale* 6 2821–6
- [22] Zhang J et al 2014 Scalable growth of high-quality polycrystalline MoS₂ monolayers on SiO₂ with tunable grain sizes ACS Nano 8 6024–30
- [23] Jeon J, Jang S K, Jeon S M, Yoo G, Park J H and Lee S 2015 Controlling grain size and continuous layer growth in twodimensional MoS₂ films for nanoelectronic device application *IEEE Trans. Nanotechnol.* 14 238–42
- [24] Lin Y-C, Zhang W, Huang J-K, Liu K-K, Lee Y-H, Liang C-T, Chu C-W and Li L-J 2012 Wafer-scale MoS₂ thin layers prepared by MoO₃ sulfurization *Nanoscale* 4 6637–41
- [25] Kim S *et al* 2012 High-mobility and low-power thin-film transistors based on multilayer MoS₂ crystals *Nat. Commun.* 3 1011
- [26] Park S, Kim S Y, Choi Y, Kim M, Shin H, Kim J and Choi W 2016 Interface properties of atomic-layer-deposited Al₂O₃ thin films on ultraviolet/ozone-treated multilayer MoS₂ crystals ACS Appl. Mater. Interfaces 8 11189–93
- [27] Liu H and Ye P D 2012 MoS₂ dual-gate mosfet with atomiclayer-deposited Al₂O₃ as top-gate dielectric *IEEE Electron Device Lett.* 33 546–8